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1 Introduction

Let Q be the space of positive definite real symmetric bilinear forms in n variables. This is an
open convex cone in the vector space of real symmetric bilinear forms. We identify Q with the
positive definite n × n symmetric matrices. Let XSL be the quotient of Q by homotheties; this is
the Riemannian symmetric space for SLn(R). The group SLn(Z) acts properly discontinuously on
XSL, generalizing the classical action of SL2(Z) on the upper half-plane. Let ΓSL be an arithmetic
subgroup of SLn(Z). Let ρ be a suitable local system of coefficients on XSL; the first lines of
Section 2.5 will specify which ρ we use.

The paper [12] introduced an algorithm for computing Hecke operators on the equivariant
cohomology Hi

ΓSL
(XSL; ρ). When ρ is over a field of characteristic zero, or of characteristic not

dividing the order of any torsion element of ΓSL, this is isomorphic to the ordinary cohomology
Hi(ΓSL\XSL; ρ). The algorithm in [12] works for any ρ and for all i = 0, 1, 2, . . . , vcd(ΓSL), where
vcd(ΓSL) = dim(Q)− n = 1

2n(n− 1) is the virtual cohomological dimension.
The present paper extends [12] to the symplectic group for n = 4. Let Sp4(R) be the subgroup

of SL4(R) that preserves the skew-symmetric bilinear form with matrix

Ω =


0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0

 .
Let X be the Riemannian symmetric space for Sp4(R). This is the submanifold of Q consisting
of those A ∈ Q satisfying the symplectic condition AΩAt = Ω. Working mod homotheties, X is
embedded in XSL. Let Γ = ΓSL ∩ Sp4(Z), where we always suppose ΓSL is chosen so that Γ is
an arithmetic subgroup of Sp4(Z). If Γ is torsion free, Γ\X is a smooth complex algebraic variety
called a Siegel modular threefold.

In this paper, we outline an algorithm for computing Hecke operators on the equivariant coho-
mology Hi

Γ(X; ρ). The algorithm works for any local coefficient system ρ and for all i.

1.1 Well-tempered complexes

The algorithm for SLn in [12] uses the well-tempered complex W̃+. This is a regular cell complex of

dimension vcd(ΓSL)+1. For a certain τ0 > 1, it is a fibration W̃+ → [1, τ2
0 ], where the coordinate τ

in the base is called the temperament. Let W̃τ be the fiber over τ . Each fiber is a contractible cell
complex of dimension vcd(ΓSL) on which ΓSL acts with finitely many orbits of cells. The fiber W̃1 is
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the well-rounded retract of [2]. As τ varies, there are a finite number of critical temperaments τ (i)

where the cell structure of the fibers of W̃+ abruptly changes. On the intervals between consecutive
critical temperaments, the cell structure does not change from fiber to fiber. See Figures 1 and 2
below for examples.

This paper’s new algorithm for Sp4 uses a subcomplex Ṽ + of W̃+ for n = 4. This Ṽ + is a

regular cell complex of dimension vcd ΓSL + 1 and is a fibration Ṽ + → [1, τ2
0 ]. Every fiber has

dimension vcd ΓSL = 6. The complex Ṽ + and all its fibers admit an action of Γ with only finitely
many orbits of cells. We define the fiber Ṽ1 in Definition 3.1; in the last Section, we discuss how to
compute the other fibers.

The Ṽτ are not the complexes we would prefer to use. [10] introduced a cell complex Ṽ (called W

in that paper) whose dimension is 4, the true vcd of Sp4(Z). The complex Ṽ is contractible and
hence acyclic, and Sp4(Z) acts on it with only finitely many orbits of cells. In [9], the combinatorics

of the cells of Ṽ are described in terms of classical projective configurations in the symplectic
projective three-space P3(Q) endowed with the form Ω. Our Ṽ1 in this paper is a thickening1 of Ṽ ,
of dimension 6. More precisely, it follows from [10] that there is an Sp4(Z)-equivariant embedding

of Ṽ as a subcomplex of the first barycentric subdivision of Ṽ1.
Our main theorem is Theorem 3.3, which says that Ṽ and Ṽ1 have the same cohomology. This

implies that Ṽ1 is itself an acyclic cell complex on which Sp4(Z) acts with only finitely many

stabilizers of cells. As such, Ṽ1 is suitable for computing the equivariant cohomology of Γ. The
advantage of Ṽ1 over Ṽ is that we can extend Ṽ1 to Ṽ +, obtaining a Hecke algorithm along the
lines of [12]. The proof of Theorem 3.3 appears in Section 3.

In Section 4, we outline a computational method which, conjecturally, would construct the fibers
Ṽτ for τ > 1 and show they are contractible. Once these computations were carried out, the rest of
the Hecke operator algorithm would proceed as in [12]. We emphasize that Section 4 is speculative,
unlike the earlier sections. Details for Section 4 will appear in a later paper.

We summarize our notation.

W̃+ well-tempered complex for SL4(R)

W̃1 well-rounded retract for SL4(R) at temperament 1 for W̃+

Ṽ contractible complex for Sp4(R) from [10]

Ṽ + the new acyclic subcomplex of W̃+ introduced in this paper

Ṽ1 cell complex at the first temperament for Ṽ +

1.2 Acknowledgments

Avner Ash’s paper [2] is foundational for both [12] and this paper. Paul Gunnells suggested to us
that combining [10] and [12] might give a Hecke operator algorithm for Sp4. We thank both of
them for these and many other helpful conversations. We also thank Robert MacPherson and Dan
Yasaki.

2 The well-tempered complex for SLn(Z)
Here is a summary of [12]. That paper concerns GLn over any division algebra D of finite dimension
over Q. We now specialize to D = Q, so that all arithmetic groups Γ are subgroups of Γ0 = GLn(Z).

1The notation was chosen because the letter V is thinner than W .
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Throughout this Section 2, we deal only with the objects called XSL and ΓSL in the Introduction,
so we drop the subscripts SL from those symbols.

A Z-lattice in Rn is a finitely generated discrete subgroup that contains an R-basis. G = GLn(R)
acts on the right on row vectors in Rn, and Γ0 = GLn(Z) stabilizes the standard lattice L0 = Zn.
Let Y = Γ\G. We view Y as a space of lattices, whose elements are L0g; the lattices have extra
structure, such as a level structure, when Γ $ Γ0. The group preserving the standard inner product
〈 , 〉 on Rn is the maximal compact subgroup K = On ⊂ G, and X = G/K is the corresponding
symmetric space.

2.1 The well-rounded retract

Definition 2.1. Let L = L0g ∈ Y . The arithmetic minimum of L is m(L) = min{〈x, x〉 | x ∈
L− {0}}. The minimal vectors are M(L) = {x ∈ L | 〈x, x〉 = m(L)}. We say L is well rounded if

M(L) spans Rn. The set of well-rounded lattices in Y with minimum 1 is denoted Ŵ .

The functions m and M are K-invariant. Hence Ŵ is K-invariant.

Theorem 2.2 ([2, Thm. 2.11]). W = Ŵ/K is a strong deformation retract of Y/K. It is compact

and of dimension vcd Γ0. The universal cover2 W̃ of W is a locally finite regular cell complex
in X on which Γ0 acts cell-wise with finite stabilizers of cells. This cell structure has a natural
barycentric subdivision which descends to a finite cell complex structure on W .

Definition 2.3. W = Ŵ/K is the well-rounded retract.

2.2 A family of retracts

The paper [12] extends Theorem 2.2 by adding an extra dimension to Y . It starts with the trivial
bundle Y × I over an interval I, where G acts fiberwise on Y × I. There is a corresponding bundle
isomorphism (Y × I)/K ∼= (Y/K)× I with fibers Y/K.

In order to generalize the construction of Theorem 2.2 and build a family of retracts, one needs
the concept of a family of weights. The quotient Pn−1(Q)/Γ is finite. A set of weights for Γ is
a function3 ϕ : Pn−1(Q)/Γ → R+. Such a ϕ defines a set of weights for L0, also denoted ϕ, by
ϕ(x) = ϕ(Qx). This is a Γ-invariant function L0 − {0} → R+. For L = L0g, a set of weights ϕ
for L0 defines a set of weights for L, by ϕL(xg) = ϕ(x), with ϕL : L− {0} → R+.

A one-parameter family of weights for L0 is a map ϕτ : (L0 − {0}) × I → R+ which is a Γ-
invariant set of weights for any given τ , and for which ϕτ (x) is real analytic in τ for any given x.
We normalize ϕτ by dividing through by a positive real scalar, which depends continuously on τ ,
so that the maximum of ϕτ is 1 for all τ . A one-parameter family of weights ϕτ determines
ϕLτ for L = L0g by ϕLτ (xg) = ϕτ (x). As a function of τ , the arithmetic minimum is given by
m(L) = min{ϕLτ (x)〈x, x〉 | x ∈ L− {0}}, with minimal vectors

M(L) = {x ∈ L | ϕLτ (x)〈x, x〉 = m(L)}. (1)

The spaces Ŵτ and Wτ = Ŵτ/K for any given τ are defined similarly. By [2, Thm. 2.11], there
is a strong deformation retraction Rτ (t) of the fiber over τ onto Wτ . In fact, more is true:

2Strictly speaking, this is a ramified cover, because certain points of W have finite stabilizer subgroups in Γ0.
The barycentric subdivision in the last sentence of the theorem produces a triangulation that is compatible with the
ramified covering map.

3There is no implicit assumption of continuity for ϕ; the only assumption on ϕ is Γ-invariance.
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Theorem 2.4 ([12]). Rτ (t) is a continuous map ((Y × I)/K)× [0, 1]→ (Y × I)/K.

Corollary 2.5. {(w× τ)/K | τ ∈ I, w ∈ Ŵτ} is a strong deformation retract of (Y × I)/K. It has
dimension vcd Γ. It is compact if I is compact. The map from the retract to I is a fibration.

2.3 Hecke correspondences

We review Hecke correspondences for GLn, following [13, §3.1 and p. 76]. Define ∆ = {a ∈ G |
L0a ⊆ L0}. Then Γ0 ⊂ ∆, and ∆ is the sub-semigroup of GLn(Q) with integer entries. The
arithmetic group Γ = Γ0∩a−1Γ0a is the common stabilizer in G of L0 and its sublattice M0 = L0a.
One calls (Γ0,∆) a Hecke pair.

A point in Γ0\X has the form Γ0gK with g ∈ G. Define two maps

Γ\X

Γ0\X

qp (2)

by p : ΓgK 7→ Γ0gK and q : ΓgK 7→ Γ0agK. The Hecke correspondence Ta is the one-to-many
map Γ0\X → Γ0\X given by

Ta = q ◦ p−1.

It sends one point of Γ0\X to [Γ0 : Γ] points of Γ0\X, counting multiplicities.
The Hecke algebra for the Hecke pair (Γ0,∆) is the free abelian group on the set of correspon-

dences Ta for a ∈ ∆, with multiplication defined by the composition of correspondences. This is
equivalent to the traditional definition as the algebra of double cosets Γ0aΓ0 for a ∈ ∆ [13, p. 54].

For a prime ` ∈ Z and for k ∈ {1, . . . , n}, define

T`,k = Ta for a = diag( 1, . . . , 1︸ ︷︷ ︸
n−k times

, `, . . . , `︸ ︷︷ ︸
k times

).

The Hecke algebra is generated by the T`,k for all primes ` and k ∈ {1, . . . , n}. If insteadG = SLn(R)
and Γ0 = SLn(Z), then ∆ is the semigroup with entries in Z and positive determinant, and the
Hecke algebra is generated by the same T`,k [13, §3.2].

2.3.1 Example for n = 2

In the Figures, we will present a running example for Γ0 = GL2(Z). The left-hand side of Figure 1

shows the complex W̃ for GL2(Z). Here X is the unit disc, which is the Klein model of the

symmetric space. W̃ is a tree. Γ0 acts on the tree, acting transitively on both the vertices and the
edges.

The right-hand side of Figure 1 shows the image of W̃ under T2 = T2,1. It is a tree, and Γ is
the largest subgroup of Γ0 that acts on it. To compute T2, we will build a one-parameter family
of trees that interpolates between the two sides of Figure 1 in a Γ-equivariant way. In the next
section, we explain how to use Theorem 2.4 to build the family. Figure 2 will show some members
of the family.
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Figure 1. The well-rounded retract for GL2(Z), and its translate by T2.

2.4 The well-tempered complex

Our choice of L0 determined the well-rounded retract for Γ0. Now fix a ∈ ∆, and let Γ = Γ0∩a−1Γ0a
as before. The well-tempered complex W+ will be determined by both L0 and a, and will naturally
admit an action by Γ.

Let M0 = L0a. By a standard calculation based on how M0 and Γ are defined in terms of a,
the next definition gives a set of weights ϕτ for Γ. We use this particular set of weights for the rest
of the paper.

Definition 2.6. For x ∈ L0 − {0} and τ > 1, define

ϕτ (x) =

{
ϕ(x) if x ∈M0 − {0},
τ2ϕ(x) if x /∈M0.

Remark 2.7. The idea here comes from m(L) in Definition 2.1. The weighted squared length
of a vector x ∈ L is ϕL(x)〈x, x〉. The squared length 〈x, x〉 scales by c2 when we multiply x by
c ∈ R. By multiplying the weight by τ2 when x /∈ M0, we mimic the effect of scaling the length
of x linearly by τ . We pretend x /∈ M0 gets “longer by lies”, linearly. When x ∈ M0, we do not
pretend to change the length.

Choose τ0 > 1, and let I = [1, τ0]. The well-tempered complex depends on τ0, but [12] shows
that the complexes for two different τ0 are isomorphic when τ0 is sufficiently large.

Definition 2.8. The well-tempered complex W+ for L0, ϕ, and a is the image of (Y × [1, τ0])/K
under the retraction Rτ (t) of Theorem 2.4, where ϕτ is as in Definition 2.6.

Theorem 2.9 ([12, Thm. 4.33]). The universal cover W̃+ of the well-tempered complex W+ is a
locally finite regular cell complex on which Γ acts cell-wise with finite stabilizers of cells. This cell
structure has a natural barycentric subdivision which descends to a finite cell complex structure
on W+.
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Figure 2. How the fiber continuously deforms in the well-tempered complex.

In the original well-rounded retract W̃ , the cells are indexed by their sets of minimal vectors M ,
each of which is a finite subset of L0 − {0}. In the well-tempered complex, cells are indexed by
pairs consisting of sets M and a set of temperaments. The proof of Theorem 2.9 in [12] shows that
there are a finite number of critical temperaments τ (i) with 1 = τ (0) < τ (1) < · · · < τ (r) = τ0. The
cells σ of Theorem 2.9 are cut into closed pieces along the hyperplanes τ = τ (i) for i = 0, . . . , r.
Each non-empty cell of the refinement is indexed by a pair. The pair is (M, [τ (i−1), τ (i)]) if the
projection of the cell to the τ -coordinate is [τ (i−1), τ (i)]. The pair is (M, [τ (i), τ (i)]) if the projection
is {τ (i)}. We will write [τ, τ ′] as shorthand for both [τ (i−1), τ (i)] and [τ (i), τ (i)].

2.4.1 Example for n = 2

We continue the example from Section 2.3.1 for T2 for Γ0 = GL2(Z). The critical temperaments

turn out to be τ (i) = 1, 2, 4. The well-tempered complex W̃+ has dimension 2. Figure 1 showed
the slices of W̃+ at τ = 1 and 4. Figure 2 shows the slices at τ = 2 − ε, 2, and 2 + ε for a small
ε > 0. It illustrates how the cell structure changes at τ = 2.

2.4.2 Hecketopes

Voronoi’s reduction theory [15] gives a way to make the well-rounded retract W̃ . The Voronoi cones

of [15] are the cones over the faces of a Voronoi polyhedron. The cells of W̃ are unions of cells in

a certain subdivision of the Voronoi cones, and, in fact, the cells of W̃ are dual to the faces of the
Voronoi polyhedron. In the same way, the well-tempered cells of W̃+ are dual to a generalization
of the Voronoi polyhedron called the Hecketope. Section 6 of [12] describes the Hecketope in full,

presenting practical algorithms for finding the cells of W̃+ along with the critical temperaments
and the indexing data (M, [τ, τ ′]).

2.4.3 The first and last temperament

For the a giving the Hecke operator T`,k, [12] sets τ0 = ` and shows there is then a simple relationship
between the fibers of the well-tempered complex over τ0 and over 1:

Theorem 2.10 ([12]). For any τ > τ0, the map X → X given by gK 7→ a−1gK descends mod Γ to
give a cell-preserving homeomorphism from the well-rounded retract W1 over 1 to the well-rounded
retract Wτ over τ . If a cell over τ = 1 is σ1(Q) with index set Q ⊂ L0 − {0}, then the cell that
corresponds to σ1(Q) under the homeomorphism has index set Qa.
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We call the endpoints of [1, τ0] the first and last temperaments, respectively.

2.5 Computing Hecke operators

Let the Hecke pair (Γ0,∆) be as above. Let ρ be any left Z∆-module. (We often take the tensor
product of ρ with a field like Q or Fp.) There is a natural left action of the Hecke algebra on the
equivariant cohomology H∗Γ0

(X; ρ) [3, §1.1]. For a ∈ ∆, the action of the Hecke correspondence Ta
on the cohomology is called the Hecke operator associated to a, and it will also be denoted Ta. It
is defined to be p∗q

∗ in a diagram derived from (2):

H∗Γ(X; ρ)

H∗Γ0
(X; ρ)

p∗ q∗ (3)

The map q∗ : H∗Γ0
(X; ρ)→ H∗Γ(X; ρ) is the natural pullback map for q. The map p∗ : H∗Γ(X; ρ)→

H∗Γ0
(X; ρ) is the transfer map [5, III.9] for p, which is defined because Γ = Γ0 ∩ a−1Γ0a has finite

index in Γ0.
We now give an algorithm that uses the well-tempered complex to compute Ta. To compute

equivariant cohomology, we may use any acyclic cell complex on which Γ0 acts. The fiber W̃τ of
the well-tempered complex W̃+ over any τ is a strong deformation retract of X, hence acyclic.
This holds in particular for the fibers W̃τ(i) over the critical temperaments τ (i), and for the inverse

image of the closed interval between two consecutive critical temperaments. Indeed, W̃[τ(i−1),τ(i)]

has dimension one higher than the vcd, but its cohomology in degree vcd+1 will be zero.
First, we compute p∗. We use τ = 1, the first temperament, when working with p. The retracts

W̃ and W̃1 are equal by definition. Γ0 acts on W̃ , and the smaller group Γ acts on W̃1. Computing
the transfer map is straightforward. (In practice it is tricky to get the orientation questions correct.
This is true for all the cells, and especially for the cells with non-trivial stabilizer subgroups. This
comment applies to all the computations in this paper.)

Next, we compute q∗. The pullback map is natural on cohomology, but we must account for the
factor of a in the definition of q. The key is to use the last temperament τ0 when working with q. We
compute H∗Γ(X; ρ) as H∗Γ(W̃τ0 ; ρ). By Theorem 2.10, there is a homeomorphism of cell complexes

W̃τ0 → W̃1, from the last temperament to the first, given by multiplication by a. As we saw for p, W̃1

equals W̃ . Thus there is a cellular map which enables us to compute q∗ : H∗Γ0
(W̃ ; ρ)→ H∗Γ(W̃τ0 ; ρ).

Computing only p∗ and q∗ does not give us the Hecke operator. The map of Theorem 2.10
involves dividing or multiplying by a. It is not a map of Γ-modules, because a ∈ ∆ but a /∈ Γ
in general. For this reason, we cannot directly map H∗Γ(W̃τ0 ; ρ) to H∗Γ(W̃1; ρ). To overcome this
last difficulty, we use the whole well-tempered complex to define a chain of morphisms and quasi-
isomorphisms. For i = 1, . . . , ir, in the portion W̃[τ(i−1),τ(i)] over the fibers τ ∈ [τ (i−1), τ (i)], define
the closed inclusions of the fibers on the left and right sides:

W̃τ(i−1)

l(i−1)

↪−−−→ W̃[τ(i−1),τ(i)]

r(i)←−−↩ W̃τ(i)

By Theorems 2.4 and 2.9, we can compute the pullbacks (l(i−1))∗ and the pushforwards (r(i))∗ on
H∗Γ(. . . ; ρ). The pullback is a naturally defined cellular map. The pushforward (r(i))∗ is a quasi-
isomorphism, the inverse of the pullback (r(i))∗; we compute the pullback at the cochain level using
the cellular map, then invert the map on cohomology.
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We summarize our algorithm as a theorem.

Theorem 2.11 ([12]). With notation as above, the Hecke operator Ta on equivariant cohomol-
ogy (3) may be computed in finite terms as the composition

p∗l
(0)∗r

(1)
∗ l(1)∗r

(2)
∗ · · · l(ir−1)∗r

(ir)
∗ q∗. (4)

2.6 Cohomology of subgroups

Let Γ′ ⊆ Γ0 be an arithmetic subgroup. We wish to compute Hecke operators on the equivariant
cohomology H∗Γ′(X; ρ) for any Γ′. By Shapiro’s Lemma [5, III.6.2], H∗Γ′(X; ρ) ∼= H∗Γ0

(X; CoindΓ0

Γ′ ρ).
We use Theorem 2.11 to compute the latter.

3 A subcomplex for Sp4(Z)
3.1 PL embedding Lemma

The well-rounded retract W̃ for SL4(R) has real dimension 6. All of its 6-cells are equivalent modulo
SL4(Z); as a representative 6-cell, we may choose the cell σ whose minimal vectors are the columns
of the 4× 4 identity matrix [15].

Definition 3.1. Denote by Ṽ1 the following closed subcomplex of W̃ :

Ṽ1 = {γ · σ | γ ∈ Sp4(Z)} .

Ṽ1 has an action of Sp4(Z), but not an action of SL4(Z). We will denote by α a closed cell in

Ṽ1 that is a non-empty intersection of the form

α = αi1···ik =

k⋂
j=1

γijσ, γij ∈ Sp4(Z). (5)

We will use this notation to suppress indices wherever they do not play a crucial role.
Let Ṽ be the retract for Sp4(R) constructed in [10]. The following lemma allows us to identify Ṽ

with its embedded image inside the subcomplex Ṽ1 of W̃ that we have just defined.

Lemma 3.2. There exists a PL-embedding Ṽ → Ṽ1.

Proof. In both W̃ and Ṽ , the cells are in one-to-one correspondence with their sets of minimal
vectors. In either cell complex, a cell α is a face of β if and only if the set of minimal vectors for α
contains the set of minimal vectors for β, by [11] and [10]. Denote by CSL the poset of the sets of

minimal vectors for W̃ and by CSp the corresponding poset for Ṽ . These are ranked posets, where
the rank of an item is the dimension of the corresponding cell. By the construction in [10], there is
an injective homomorphism of ranked posets CSp → CSL. Since geometric realization is a faithful

functor, it follows that there is PL-embedding Ṽ → W̃ , whose image is contained in Ṽ1. q.e.d.

3.2 Thickening Theorem

We remarked in the introduction that the PL embedding Ṽ → Ṽ1 is a thickening of Ṽ , raising the
dimension from 4 to 6. The main theorem of this Section is that the two spaces have the same
topology.

Theorem 3.3. The PL embedding Ṽ → Ṽ1 induces an isomorphism on cohomology. In particular,
Ṽ1 is acyclic.
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3.3 Local contractibility

We need a local result about contractibility. In the next section, this will be extended to prove the
global result that Ṽ1 is acyclic.

Proposition 3.4. For any α of the form (5), α ∩ Ṽ is a contractible subcomplex of Ṽ1.

Proof. Without loss of generality, we may assume α is a face of σ. Indeed, by its definition, Ṽ1 is
invariant under Sp4(Z), so we may replace α by γα for any γ ∈ Sp4(Z). After this replacement, we
may take γi1 = I.

Let R be the set of all cells W̃ which have the form γσ for some γ ∈ Sp4(Z) and such that

γσ ∩ σ 6= ∅. By definition, R is a subset of Ṽ1. It is finite, by the local finiteness of W̃1. Every
non-empty α of the form (5) will have all of its γijσ in R, given the constraint α ⊆ σ.

We use a computer to enumerate and store R, as follows. Enumerate all the faces β of σ (these
have dimensions 0, . . . , 6). For each β, let M be the set of its minimal vectors; M is a subset of
Z4 containing between 4 and 12 vectors. (We find M based on the tables in [11]. Vectors ~x and

−~x in M are counted only once.) For each M , consider all
(|M |

4

)
four-element subsets M4. We test

whether we can permute the columns of M4, and multiply zero or more of its columns by −1, to
make M4 ∈ Sp4(Z). If the test passes, then γ = M4 ∈ Sp4(Z) is such that γσ ∈ R.

Next, we compute all α’s by computing all k-fold intersections of cells in R. We use a hash
table whose value is an α as in (5), and whose key M is the union of the minimal vectors for
the γij appearing in the intersection. (In other words, M is the union of the column vectors ~x in
the matrices γi1 = I, γi2 , . . . , γik , and −~x too.) We use a loop to fill the hash table first with
(k = 1)-fold intersections (which means γi1 = I only), then (k = 2)-fold intersections, then k = 3,
etc. When a value α becomes the empty cell, we stop exploring that branch of the table.

Consider one of the α in the table. As we have said, α is a PL cell, hence is contractible. What
the proposition asserts is that α ∩ Ṽ is contractible. Let B be the set of sets of minimal vectors
Mβ for all faces β of σ which contain α and such that Mβ is one of the sets of minimal vectors

occurring in Ṽ . In terms of Lemma 3.2, each Mβ ∈ B determines a vertex in the image of the PL
embedding, and the containment relations among the sets determine a simplicial subcomplex α4
of the image of the PL embedding. This subcomplex α4 is α ∩ Ṽ .

Showing, for each α, that α4 is contractible is a matter of direct checking. The first possibility

is that the minimal vectors of α already determine a cell in Ṽ ; then α4 is homeomorphic to the first
barycentric subdivision of α itself, hence is contractible. The second possibility is that α4 is a single
closed simplex; obviously this is contractible. The third possibility is that α4 is a more general
finite simplicial complex. Here we use computation to verify three facts about α4: its reduced
homology with coefficients in Z is trivial, its fundamental group is trivial, and it is shellable. For a
finite simplicial complex, trivial Z-homology together with trivial fundamental group imply α4 has
the homotopy type of a point; this gives one proof that α4 is contractible. A second proof is that
a shellable complex is a bouquet of spheres, and trivial Z-homology implies the number of spheres
in the bouquet is zero. q.e.d.

3.3.1 Performance of the algorithm

The computation in the previous proof was coded up in Sage [14]. In the last paragraph of the proof,
when α4 was a “more general finite simplicial complex”, we checked that its reduced Z-homology
was trivial, that its fundamental group π1 was trivial, and that it was shellable. As the proof says,
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checking shellability was unnecessary given the first two. Nevertheless, we were curious to see how
the π1 and shellability algorithms would perform, so we used them both.

The code completed, proving Proposition 3.4, in seven days. Without checking π1 and shella-
bility, it would have completed in less than 24 hours. The largest sets M encountered had |M | = 8.

3.4 Proof of the Thickening Theorem

We recall results about second derived neighborhoods. Let K be a simplicial complex. For a simplex
A ∈ K, the star of A in K is the following open subcomplex of K:

star(A;K) = {B ∈ K | B ≥ A}

where the relation ≥ is cellular inclusion. Its closure star(A;K) comprises the cells of star(A;K)
and their faces.

A subcomplex K0 ⊆ K is called full if no simplex of K −K0 has all of its vertices in K0. The
closed simplicial neighborhood of a full subcomplex K0 in K is formed by taking the following union
of closed stars:

N(K0;K) =
⋃

vertices v∈K0

star(v;K)

Denote by |N(K0;K)| the underlying polyhedron of this closed simplicial neighborhood. If
K0 ⊆ K is a full subcomplex, then |N(K0;K)| is referred to as a derived neighborhood of the
polyhedron |K0| in the PL-manifold |K|. More generally, let K(r) be the rth barycentric subdivision

of the complex K. Then, for a full subcomplex K0 ⊆ K, the polyhedron
∣∣∣N(K

(r)
0 ;K(r))

∣∣∣ is the rth

derived neighborhood of |K0| in |K|. That is:

N(K
(r)
0 ;K(r)) =

⋃
vertices v∈K(r)

0

star(v;K(r))

Theorem 3.5 ([8, Thm. 2.11]). The second derived neighborhood of a full subcomplex K0 ⊆ K
is a regular neighborhood of |K0| in the PL-manifold |K|. In particular, it is a strong deformation
retract of |K0|.

With these preliminaries, we return to the proof of the main theorem. With respect to a fixed
triangulation of the well-rounded retract W̃ , the complex Ṽ1 is a simplicial subcomplex of the first
barycentric subdivision W̃ (1). By [2] and [12], each closed cell α ∈ Ṽ1 is convex. By convexity, any

simplex of W̃ (1) having all of its vertices in α must be contained in α, since a simplex is the convex
hull of its vertices. Therefore, α is a full simplicial subcomplex of Ṽ1, and Theorem 3.5 applies.

Let Ṽ
(2)
1 denote the second barycentric subdivision of Ṽ1. For each closed cell α ∈ Ṽ1, form the

simplicial subcomplexes N(α(2); Ṽ
(2)
1 ) of Ṽ

(2)
1 , and denote by Nα the corresponding second derived

neighborhood. By Theorem 3.5, Nα is a regular neighborhood of α in Ṽ1, whence its interior N◦α is
a strong deformation retract of α. Moreover, we have the following lemma:

Lemma 3.6. For distinct cells α1, α2 ∈ Ṽ1 with common face α1 ∩ α2 = α one has:

N◦α1
∩N◦α2

= N◦α
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Proof. The result follows directly from the observation that

N(α
(2)
1 ; Ṽ

(2)
1 ) ∩N(α

(2)
2 ; Ṽ

(2)
1 ) = N(α(2); Ṽ

(2)
1 ).

Indeed, recall that

N(α(2); Ṽ
(2)
1 ) =

⋃
vertices v∈α(2)

star(v; Ṽ
(2)
1 ).

Since α is the common face of α1 and α2, the vertices of α(2) are precisely the common vertices of

α
(2)
1 and α

(2)
2 , justifying the desired equality. q.e.d.

By Lemma 3.6, the union of the N◦α for each closed cell α ∈ Ṽ1 is a Čech cover of Ṽ1. Thus, by
a generalized Mayer-Vietoris argument in relative homology [4, p. 161], we obtain a proof of the
main theorem, as follows.

Proof of Theorem 3.3. By Proposition 3.4, Hn(N◦α, N
◦
α ∩ Ṽ ) = 0 for all degrees n. Then, from

the long exact sequence of the pair (N◦α, N
◦
α ∩ Ṽ ) in relative homology there is an isomorphism

Hn(N◦α) ∼= Hn(N◦α, N
◦
α ∩ Ṽ ) in all degrees, whence Hn(N◦α, N

◦
α ∩ Ṽ ) = 0 for all n. Now, consider

the relative homology of the pair (Ṽ1, Ṽ ), where Ṽ is identified with its image under the piecewise

linear embedding constructed in Lemma 3.2. We claim that Hn(Ṽ1, Ṽ ) = 0 for all degrees n. Let

U denote the Čech open cover of Ṽ1 consisting of the N◦α. Denote by N◦αi0···ik
the open polyhedral

neighborhood corresponding to the intersection αi0···ik , which is well-defined by Lemma 3.6. The

augmented double complex C∗((U, Ṽ ), A∗) endowed with the differential D = δ+(−1)p ·d computes

the singular relative homology H∗(Ṽ1, Ṽ ). This double complex has groups:

Kp,q =
∏

i0<···<ip

Aq(N
◦
αi0···ip

, N◦αi0···ip
∩ Ṽ )

with Aq the qth singular relative homology group. By Proposition 3.4, the vertical d-complexes are
exact, and by the generalized Mayer-Vietoris principle, so are the horizontal δ-complexes. Therefore,
the spectral sequence of this double complex degenerates at the E2 page, and we have Hn(Ṽ1, Ṽ ) = 0

in all degrees n. Finally, the long exact sequence of the pair (Ṽ1, Ṽ ) in relative homology gives an

isomorphism Hn(Ṽ ) ∼= Hn(Ṽ1) in all degrees. But, by [10] we know Ṽ is contractible, whence Ṽ1 is
acyclic. q.e.d.

4 A well-tempered complex for Sp4

In the previous section, we defined a closed subcomplex Ṽ1 of W̃1. Our Ṽ1 is acyclic, and (by
definition) it has an action of Sp4(Z) with only finitely many orbits of cells. In Section 4.1, we

describe how one could extend this to all temperaments, defining a closed subcomplex Ṽ + of W̃+, so
that Sp4(Z) acts on Ṽ + with only finitely many orbits of cells, and so that for each temperament τ

the fiber Ṽτ of Ṽ + over τ is acyclic. The definition of Ṽ + would proceed by induction on i from
one critical temperament τ (i) to the next. Section 4.2 outlines a Hecke operator algorithm based
on this for arithmetic subgroups of Sp4(Z).

We emphasize that Section 4 is speculative, unlike Sections 1–3. Details will appear in a later
paper.
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4.1 Defining the well-tempered complex for Sp4

Extending the definition up to a critical temperament is relatively straightforward. At a critical
temperament τ (i) for i > 0, we define the cells of Ṽτ(i) to be the cells of W̃τ(i) that are in the closure

of those for Ṽ[τ(i−1),τ(i)].

To start the induction at i = 0, we note that the first temperament τ (0) = 1 is not technically a
critical temperament. When τ is > 1 but very near 1, Formula (1) shows that the sets of minimal
vectors M(L) do not change. They will not change until τ reaches some specific value, which is

τ (1) > 1. The cells of Ṽ + over [τ (0), τ (1)] are in one-to-one correspondence with those over τ (0) = 1,
locally cylindrical extensions of one higher dimension. The passage to τ (1) can thus be handled as
in the previous paragraph.

When we extend by closure from the cells over τ ∈ (τ (i−1), τ (i)) to the closure over τ (i), our

inductive hypothesis is that Ṽ[τ(i−1),τ(i)] is an acyclic complex. We need to prove that Ṽτ(i) is also
acyclic. It suffices to work modulo a torsion-free arithmetic subgroup of Sp4(Z), such as Γ(3). By

looking at the sets of minimal vectors, we will define a cellular map Γ(3)\Ṽ[τ(i−1),τ(i)] → Γ(3)\Ṽτ(i) .
We anticipate that this cellular map will be a cellular collapsing map, but we will need to prove
it is a collapsing map. One way to do this is by discrete Morse theory [6] [7]. The quotients

Γ(3)\Ṽ[τ(i−1),τ(i)] and Γ(3)\Ṽτ(i) are finite, and they are regular cell complexes. We will put a

discrete Morse function on Γ(3)\Ṽτ(i) . We anticipate being able to extend it in some sensible way

to a function on Γ(3)\Ṽ[τ(i−1),τ(i)], for instance by adding new Morse values for Γ(3)\Ṽ[τ(i−1),τ(i)]

in the same order that they appear in Γ(3)\Ṽτ(i) . Once the function has been extended, it is
straightforward to see whether the extension is a discrete Morse function that defines a collapsing
map. If it is not, we will study the failure and improve the extended function on an ad hoc basis.

Extending the definition from Ṽτ(i) to Ṽ[τ(i),τ(i+1)], for i > 0, requires more care. There are

many cells in W̃[τ(i),τ(i+1)] whose closures meet Ṽτ(i) , but we only want to take some of them, the

smallest possible set so that Ṽ[τ(i),τ(i+1)] will be acyclic and of dimension 7. Certainly we will

include all top-dimensional cells T of W̃[τ(i),τ(i+1)] whose closures meet Ṽτ(i) in a top-dimensional
cell in codimension one; here the sets of minimal vectors are not changing as τ increases across the
codimension-one boundary (another locally cylindrical case). Examples show, however, that there
can be holes in T ; the complex may not be acyclic.

We will make a provisional definition of Ṽ[τ(i),τ(i+1)], and then will fill the holes in T , if there
are any, by the following procedure. Let P be the Borel subgroup of upper-triangular matrices in
Sp4(R), and P (Z) its integer points. P (Z)\P (R) is a nilmanifold whose universal cover is P (R),

homeomorphic to R4. Let σ4 be the top-dimensional cell in Ṽ whose minimal vectors are the columns
of the identity matrix; every 4-cell in Ṽ is equivalent to it. Define the standard Großenkammer4

in Ṽ to be {γσ4 | γ ∈ P (Z)}. This is homeomorphic to the universal cover of the nilmanifold
P (Z)\P (R).

Define the standard Großenkammer in Ṽ1 to be {γσ | γ ∈ P (Z)}. Intuitively, this is a thickening

of the standard Großenkammer in Ṽ . It is homeomorphic to R4 × R2, with an action of P (Z) on
the R4 factor, and the quotient modulo P (Z) is a trivial R2-bundle over the nilmanifold.

In either Ṽ or Ṽ1, a Großenkammer is γ times the standard Großenkammer, for any γ ∈ Sp4(Z).

4The name means great chamber in the Tits building. More accurately, it is a particular gallery in that building,
determined by the minimal parabolic P .
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By Definition 3.1, Ṽ1 is the union of the Großenkammern coming from all translates by coset
representatives of Sp4(Z)/P (Z).

The Borel subgroup P (R) is a maximal solvable subgroup. It is filtered by a sequence of normal
subgroups so that the subquotients are copies of the additive group R. One such sequence is

· · · ⊂
[

1 0 0 ∗
0 1 ∗ 0
0 0 1 0
0 0 0 1

]
⊂
[

1 0 ∗ ∗
0 1 ∗ ∗
0 0 1 0
0 0 0 1

]
⊂ P (R). (6)

These subgroups foliate P (R) by copies of R3, which are in turn foliated by copies of R2, which are
in turn foliated by copies of R1.

To fill the holes in T , we will first find appropriate definitions of the standard Großenkammer
for Ṽ[τ(i),τ(i+1)]. We will consider the action of P (Z) on sample top-dimensional cells in T , choosing

them so that they fill out as much of the thickened R4 as possible. It will be easiest to act on cells
in T by the one-dimensional subgroup in (6), making cellular models of the leaves R1. If the model
is a thickened R1 with gaps, it will be easy to see which cells fill in those gaps. Next, we will act by
the the two-dimensional subgroup in (6), making cellular models of the leaves R2, and so on. We
will perform these checks for temperaments i = 0, 1, 2, . . . .

At the end, we will have a provisional definition of a Großenkammer, a cellular model of a thick-
ened R4. We will define Ṽ[τ(i),τ(i+1)] to be the union of these provisional Großenkammern coming
from all translates by coset representatives of Sp4(Z)/P (Z). Since the definition is provisional, it

will be necessary to prove that Ṽ[τ(i),τ(i+1)] is acyclic. We can do this using discrete Morse theory
as described above.

4.2 Outline of a Hecke operator algorithm for Sp4

By [1, Thms. 3.37 and 3.40], the Hecke algebra for Sp4(Z) is generated by the Hecke correspondences
Ta where we take the following two a’s for each prime `:

diag(1, 1, `, `), diag(1, `, `, `2).

(There is a change of coordinates, because [1] uses the symplectic form
[

0 I
−I 0

]
rather than our Ω.)

The subgroups Γ = Sp4(Z)∩a−1Sp4(Z)a, when reduced mod `, are the Siegel and Klingen parabol-
ics, respectively. By [12, Thm. 4], τ0 = ` and `2 in the respective cases.

To compute the Hecke operators, we replace W̃+ with Ṽ + and compute Formula (4) in this
setting.
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